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Fig. 1: Gaga groups any Gaussians in an open-world 3D scene and renders multi-
view consistent segmentation (pixels of the same 3D region across views are represented
with the same color). By employing a 3D-aware memory bank, we eliminate the label
inconsistency that exists in 2D segmentation and assign each mask across different
views a universal group ID. This enables the process of lifting 2D segmentation to
consistent 3D segmentation. Gaga produces accurate 3D object instance segmentation,
achieving high-quality results for downstream applications such as scene manipulation
(e.g ., changing the color of the cushion on the footstool to maroon).

Abstract. We introduce Gaga, a framework that reconstructs and seg-
ments open-world 3D scenes by leveraging inconsistent 2D masks pre-
dicted by zero-shot segmentation models. Contrasted to prior 3D scene
segmentation approaches that heavily rely on video object tracking, Gaga
utilizes spatial information and effectively associates object masks across
diverse camera poses. By eliminating the assumption of continuous view
changes in training images, Gaga demonstrates robustness to variations
in camera poses, particularly beneficial for sparsely sampled images, en-
suring precise mask label consistency. Furthermore, Gaga accommodates
2D segmentation masks from diverse sources and demonstrates robust
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Fig. 2: Comparison of rendered segmentation. Previous methods [9, 26] adopt
an off-the-shelf video object tracker for mask association. Results on the ScanNet
dataset [8] show that they frequently misidentify objects, especially when similar ob-
jects are present in the scene (e.g ., the leather sofas), and struggle to handle significant
changes in camera perspective. In contrast, Gaga integrates 3D information to precisely
locate objects and associate 2D masks, leading to multi-view consistent class-agnostic
segmentation and precise instance segmentation rendering. We adopt the ground truth
panoptic segmentation of the ScanNet dataset for comparison as it is visually the same
as class-agnostic segmentation.

performance with different open-world zero-shot segmentation models,
enhancing its versatility. Extensive qualitative and quantitative evalua-
tions demonstrate that Gaga performs favorably against state-of-the-art
methods, emphasizing its potential for real-world applications such as
scene understanding and manipulation.

Keywords: 3D Open-world Segmentation · Gaussian Splatting · Scene
Understanding

1 Introduction

Effective open-world 3D segmentation is essential for scene understanding and
manipulation. Despite notable advancements in 2D segmentation techniques,
exemplified by Segment Anything (SAM) [14] and EntitySeg [21], extending
these methodologies to the realm of 3D encounters the challenge of ensuring
consistent mask label assignment across multi-view images. Specifically, masks
of the same object across different views may have different mask label IDs, as
the multi-view images are processed by the 2D segmentation model individually.
Naively lifting these inconsistent 2D masks to 3D introduces ambiguity and leads
to inferior results in 3D scene segmentation. Hence, we argue that it is crucial to
assign each mask a multi-view consistent universal mask ID before lifting them
to 3D. We refer to this task as mask association.

Prior research efforts [9,26] built upon the recent advance in 3D reconstruc-
tion, Gaussian Splatting [11], attempt to solve this task by treating multi-view
image datasets as video sequences and adopting an off-the-shelf video object
tracking method [6]. Nevertheless, this design relies on the assumption of mini-
mal view changes between multi-view images, a condition that may not consis-
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tently hold in real-world 3D scenes. Consequently, these approaches struggle with
similar objects or occluded objects that intermittently disappear and reappear
in the sequence, as shown in Fig. 2.

As such, we analyze the fundamental disparity between the 3D mask associ-
ation and video object tracking task: the utilization of inherent 3D information.
Specifically, masks of the same object across different views shall correspond to
the same group of 3D Gaussians. Hence, we can assign two masks from different
views with the same universal mask ID if there is a large overlap between the
two groups of 3D Gaussians that are splatted to them.

Based on this intuition, we propose Gaga, a framework that groups any 3D
Gaussians and renders consistent 3D segmentation across different views. Given
a collection of posed RGB images, we first employ Gaussian Splatting to re-
construct a 3D scene and extract 2D masks using an open-world segmentation
method. Subsequently, we iteratively build a 3D-aware memory bank that col-
lects and stores Gaussians grouped by category. Specifically, for each input view,
we project each 2D mask into 3D space using camera parameters and search the
memory bank for the category with the largest overlap with the deprojected
mask. Depending on the degree of overlap, we either assign the mask to an
existing category or create a new one. Finally, following the mask association
process described above, we leverage the consistent 2D masks to learn a feature
on each Gaussian for rendering segmentation.

Our approach, Gaga, is capable of 1) synthesizing novel view images of RGB
and segmentation with inherent 3D consistency; 2) grouping 3D Gaussians based
on their 2D segmentation masks and providing accurate 3D instance segmenta-
tion for scene manipulation; 3) accommodating any 2D segmentation methods
without additional mask pre-processing. Our contributions are summarized as
follows:
– We propose a framework that reconstructs and segments 3D scenes using

inconsistent 2D masks generated by open-world segmentation models.
– To resolve the inconsistency of 2D masks across views, we design a 3D-

aware memory bank that collects Gaussians of the same semantic group.
This memory bank is then employed to align 2D masks across diverse views.

– We show that the proposed method can effectively leverage any 2D segmen-
tation masks, making it easily applicable for synthesizing novel view images
and segmentation masks.

– We conduct comprehensive experiments on diverse datasets and challenging
scenarios, including sparse input views, to demonstrate the effectiveness of
the proposed method both qualitatively and quantitatively.

2 Related Work

Segment and Track Anything in 2D. Segment Anything (SAM) [14] and
EntitySeg [21] demonstrate the effectiveness of large-scale training in image seg-
mentation, thus establishing a pivotal foundation for open-world segmentation
methods. Subsequent studies [6, 7, 25] further extend the applicability of SAM
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to video data by leveraging video object segmentation algorithms to propagate
the masks generated by SAM. Conversely, acquiring data for training their 3D
counterparts poses a challenge, given that existing 3D datasets with annotated
segmentation [8, 23] primarily focus on indoor scenarios.

NeRF-based 3D Segmentation. Neural Radiance Fields (NeRFs) [19] model
scenes as continuous volumetric functions, learned through neural networks that
map 3D coordinates to scene radiance. This approach facilitates the capture of
intricate geometric details and the generation of photorealistic renderings, offers
novel view synthesis capabilities.

Semantic-NeRF [27] initiates the incorporation of semantic information into
NeRFs and enables the generation of semantic masks for novel views. Note that
lifting semantic segmentation masks to 3D does not face the challenge of am-
biguous mask IDs across views. Building upon it, subsequent researches expand
the scope by introducing instance modeling and matching instance masks rely-
ing on 3D bounding boxes [10, 18], solving cost-based linear assignment during
training [22, 24] or directly training instance-specific MLPs [15]. However, most
of these methods are developed based on ground truth segmentation and tailored
for scene modeling within specific domains. They often entail high computational
costs and lack substantial evidence of their performance in open-world scenarios.

Leveraging SAM’s open-world segmentation capability, SA3D [3] endeavors
to recover a 3D consistent mask by tracing 2D masks across adjacent views with
user guidance. Similarly, Chen et al. [5] distill SAM encoder features into 3D and
query the decoder. In contrast, Gaga achieves multi-view consistency without
user intervention, and offers segmentation for all objects rather than an instance.
Concurrent work GARField [13] densely samples SAM masks and trains a scale-
conditioned affinity field supervised on the scale of each mask deprojected to
3D. Whereas Gaga does not require the preprocessing process to obtain densely
sample masks of different scales. Meanwhile, [13] groups Gaussians as clusters
and multiple 3D instances may have the same group ID, which differs from the
3D segmentation task.

Gaussian-based 3D Segmentation. As an alternative to NeRF and its vari-
ants [1, 4, 20], Gaussian Splatting [11] has recently emerged as a powerful ap-
proach to reconstruct 3D scenes via real-time radiance field rendering. By rep-
resenting the scene as 3D Gaussians, Gaussian Splatting achieves photorealistic
novel view synthesis with high reconstruction quality and efficiency. Addition-
ally, manipulating 3D Gaussians for scene editing is more straightforward than
NeRF’s representation.

SAGA [2] renders a 2D SAM feature map and uses a SAM guidance loss to
learn 3D segmentation from the ambiguous 2D masks. Similar to [3], this method
requires user input and only provides segmentation for one instance at a time.
Feature 3DGS [28] distills LSeg [16] and SAM features to 3D Gaussians and
decodes rendered features to obtain segmentation. However, it fails to provide
consistent segmentation across views. Gaussian Grouping [26] and CoSSegGaus-
sians [9] use 2D segmentation masks as pseudo labels and use a video object
tracker [6] to associate masks across different views before lifting them to 3D.
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However, in scenarios with significant changes in camera poses between frames,
such approaches struggle to maintain accuracy.

3 Proposed Method

3.1 Preliminaries

Gaussian Splatting. Recently, Gaussian Splatting [11] has significantly ad-
vanced the 3D representation field by combining the benefits of implicit and
explicit 3D representations. Specifically, a 3D scene is parameterized as a set
of 3D Gaussians {Gi}. Each Gaussian Gi = {pi, si, qi, αi, ci} is defined by its
position pi = {x, y, z} ∈ R3, scale si ∈ R3, orientation q ∈ R4, opacity α ∈ R
and color features c encoded by spherical harmonics (SH) coefficients.

For image rendering, Gaussian Splatting employs the splatting rendering
pipeline, wherein 3D Gaussians are projected onto the 2D image space using
the world-to-frame transformation matrix corresponding to each camera pose.
Gaussians projected to the same coordinates (x, y) are blended in depth order
and weighted by their opacities to produce the color cx,y of each pixel:

cx,y =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (1)

Identity Encoding. Identity encoding ei [26] aims to assign a universal label
to each 3D Gaussian for segmentation rendering. It is a 16-dimensional feature
attached to each Gaussian, which is subsequently decoded to a segmentation
mask ID mx,y for each pixel (x, y) through a classifier L, i.e., a combination of
a linear and a SoftMax layer:

mx,y = argmax(L(
∑
i∈N

eiαi

i−1∏
j=1

(1− αj))). (2)

The resulting mask IDs are supervised using 2D segmentation masks.

3.2 Group Any Gaussians via 3D-aware Memory Bank

Given a set of posed images, we aim to reconstruct a 3D scene with semantic
labels for segmentation rendering. To this end, we first leverage Gaussian Splat-
ting for scene reconstruction. We then employ an open-world 2D segmentation
method such as SAM [14] or EntitySeg [21] to predict class-agnostic segmenta-
tion for each input image. However, because the segmentation model processes
each input image independently, the resulting masks are not naturally multi-
view consistent. To resolve this issue, [9,26] assume that nearby input views are
similar and apply a video object tracker to associate inconsistent 2D masks of
different views. Yet, this assumption may not hold for all 3D scenes, especially
when the input views are sparse.
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Fig. 3: Overview of Gaga. Gaga reconstructs 3D scenes with Gaussian Splatting and
adopts an open-world model to generate 2D segmentation masks. To eliminate the 2D
mask label inconsistency, we design the 3D-aware mask association process, where a 3D-
aware memory bank is employed to assign a consistent group ID across different views to
each 2D mask based on the 3D Gaussians projected to that mask (Sec. 3.2). Specifically,
we find the corresponding Gaussians projected to each 2D mask and assign the mask
with the group ID in the memory bank with the maximum overlapped Gaussians
(Eq. 3). After the 3D-aware mask association process, we use masks with multi-view
consistent group IDs as pseudo labels to train an identity encoding on each 3D Gaussian
for segmentation rendering.

Gaga is inspired by the fundamental disparity between the task of mask asso-
ciation across multiple views and tracking objects in a video: the incorporation
of 3D information. To reliably generate consistent masks across different views,
we propose a method that leverages 3D information without relying on any as-
sumptions about the input images. Our key insight is that masks belonging to
the same instance in different views shall correspond to the same Gaussian group
in the 3D space. Consequently, these Gaussians should be grouped together and
assigned an identical group ID.

Corresponding Gaussians of a Mask. Based on this intuition, we first asso-
ciate each 2D segmentation mask with its corresponding 3D Gaussians. Specif-
ically, we splat all 3D Gaussians onto the camera frame given the camera pose
of each input image. Subsequently, for each mask within the image, we identify
which 3D Gaussians are projected within that mask. Those Gaussians should be
identified as representatives of the mask in 3D and can be used as guidance for
us to associate masks from different views.

Notably, segmentation masks typically describe the shape of foreground ob-
jects under the current camera pose. However, as Fig. 4 (a) shows, a significant
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Fig. 4: Illustrations of finding corresponding Gaussians. (a) Motivation to
choose front x% of Gaussians. We select x% of Gaussians which are closest to the
camera frame because many Gaussians splatted to mask in view 1 represent objects
from behind, as shown in view 2. (b) The significance of mask partition. We color
the Gaussians in the 3D-aware memory bank based on their groups, displayed as "3D
Gaussian Groups" in columns 1 and 3. When images aren’t partitioned (row 1), the
front x% of Gaussians concentrate in a confined area, failing to accurately represent
the shape of the mask, resulting in mismatched masks (columns 2, 4).

proportion of Gaussians do not contribute to the pixels in the 2D segmentation
mask, as they represent objects situated behind. To address this, we select the
front x% percentage of 3D Gaussians that are closest to the camera frame as
the corresponding Gaussians of the mask. Here, x serves as a hyperparameter
that can be adjusted based on the nature of the current 3D scene. As shown in
Fig. 4 (b) row 1, selecting corresponding Gaussians based on the entire mask will
inaccurately represent the shape of the mask for masks of large regions, and fail
to associate masks across different camera poses. To resolve this issue, we pro-
pose a strategy wherein we partition an input image into patches and calculate
corresponding Gaussians within each patch. Specifically, we begin by dividing
the image into 32×32 patches. Subsequently, we identify the collection of top
x% percentage of 3D Gaussians that are closest to the camera frame within
each patch to be the corresponding Gaussians of mask m, denoted as G(m). As
demonstrated in Fig. 4 (b) row 2, this simple strategy effectively improves the
consistency of associated masks across different views.

3D-aware Memory Bank. Next, to collect and categorize 3D Gaussians into
groups and use them to associate masks across different views, we introduce a
3D-aware Memory Bank (see Fig. 3). Given a set of images, we initialize the
3D-aware Memory Bank by storing the corresponding Gaussians of each mask
in the first image into an individual group and label the mask with a group ID
the same as its mask label. For each 2D mask of the subsequent image, we first
determine its corresponding Gaussians as outlined above. We then either assign
these Gaussians to an existing group within the memory bank or establish a new
one if they do not share similarities with existing groups in the memory bank.
The details of this assignment process are elaborated in the following.



8 W. Lyu et al.

Group ID Assignment via Gaussian Overlap. To assign each mask a group
ID, we aim to find if the current mask has a significant similarity with any
group in the memory bank. Here, we define the similarity between two sets of
3D Gaussians based on their shared Gaussians ratio. Specifically, given the 3D
Gaussians corresponding to a 2D mask m (denoted as G(m) as described above)
and the Gaussians of group i (denoted as Gi) in the memory bank, we identity
their shared Gaussians (i.e., Gaussians of the same indices) as G(m) ∩ Gi, we
then compute the overlap as the ratio of the number of shared Gaussians to the
number of all corresponding Gaussians of mask m:

Overlap(m, i) =
#(G(m) ∩ Gi)

#G(m)
. (3)

If group i has the highest overlap with mask m among all groups in the memory
bank, and this overlap value is above a threshold, we assign the group ID of
mask m as i and add the non-overlapped Gaussians in the ith group.

Gi = Gi ∪ G(m). (4)

We establish a new group ID j if none of the existing groups contains an overlap
with mask m above the overlap threshold. We add G(m) into this new group in
the 3D-aware memory bank and assign mask m with the new group ID j. Note
that we ensure each Gaussian will only be added to one group in the memory
bank by recording the indices of all Gaussians that already exist in the memory
bank.

3.3 3D Segmentation Rendering and Downstream Application.

After the group ID assignment process, masks projected by the same group of
Gaussians are supposed to have the same group ID across different views. Similar
to [26], we use those associated masks as pseudo labels and lift them to 3D by
training the identity encoding. As we already obtain pre-trained Gaussians, we
fix the other properties (e.g., location, opacity, etc.) of Gaussians for efficiency.

Our segmentation-aware 3D Gaussians can be readily used for various down-
stream applications. For instance, we can render segmentation masks of novel
views that have consistent mask color for the same object across different camera
poses. Gaussians can also be selected by their identity encoding for scene editing
tasks including removal, color-changing, position translation, etc., as demon-
strated in Sec. 4.6.

4 Experiments

4.1 Experimental Setup

Datasets. We experiment with various datasets across diverse scenarios to
demonstrate the performance of Gaga. For quantitative comparison, we use
a scene understanding dataset LERF-Mask [26], along with two indoor scene
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datasets: Replica [23] and ScanNet [8]. LERF-Mask is based on the LERF
dataset [12] and annotated with tasks and ground truth by the author of [26]. It
contains 3 scenes: figurines, ramen, and teatime. For each scene, 6-10 objects are
selected as text queries, and Grounding DINO [17] is utilized to select the mask
ID from the rendered segmentation. Indoor datasets Replica and ScanNet are
commonly used to evaluate 3D scene understanding methods, as ground truth
semantic segmentation and panoptic segmentation are provided. We employ 8
scenes from Replica rendered by the author of [27], each consisting of 180 train-
ing images and an equal number for testing. We utilize 7 scenes in ScanNet,
processed similarly to [24]. Each scene contains over 300 training images and
around 100 testing images. Note that all annotated segmentation masks are un-
available during training and only accessible during evaluation as ground truth.
We present visual comparison results on the commonly used scene reconstruc-
tion dataset, MipNeRF 360 [1]. Additionally, we showcase the robustness of Gaga
against variations in training image quantity by sparsely sampling Replica and
MipNeRF 360 datasets. For all experiments, the quantitative and qualitative
results are conducted on the test set, i.e., novel view synthesis results.
Evaluation Metrics. mIoU and boundary IoU (mBIoU) are used for evaluation
on the LERF-Mask dataset. For Replica and ScanNet datasets, we evaluate using
ground truth panoptic segmentation, disregarding class information. To handle
differences between predicted and ground truth mask labels, we calculate the best
linear assignment based on IoU. Moreover, with IoU = 0.5 as the criterion, we
report precision and recall to further evaluate the accuracy of predicted masks.
Implementation Details. We use SAM [14] the default version and Entity-
Seg [21] with the Hornet-L backbone to obtain open-world 2D segmentation. We
preprocess the generated raw masks following the method outlined in [21], prior-
itizing those with higher confidence scores by ranking them accordingly. Masks
with confidence scores below 0.5 are discarded. For all experiments, we train the
vanilla Gaussian Splatting for 30K iterations and train the identity encoding for
10K iterations with all other parameters frozen. We choose the front 20% 3D
Gaussians that are closest to the camera frames as the corresponding Gaussians
of a mask. We set the overlap threshold for declaring a new group ID as 0.1.
For fair comparisons, we train Gaussian Grouping [26] for 40K iterations, with
all parameters for training 3D Gaussians with their identity encoding remaining
the same as the default setting in [11] and [26]. We use the official transcript
of [11] to obtain camera poses and initial point clouds.

4.2 Open-vocabulary 3D Query on LERF-Mask Dataset

We experiment on the LERF-Mask dataset following the evaluation process
in [26]. Tab. 1 illustrates that Gaga achieves superior results in mIoU and mBIoU
compared to previous methods [12,26]. especially when utilizing EntitySeg as the
2D segmentation method, resulting in approximately a 9% advantage for both
mIoU and mBIoU. In Fig. 5, we present visualizations of the rendered segmen-
tation, rendered feature field, and 3D query results. Gaga yields more precise
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Table 1: Quantitative results for open-vocabulary 3D query tasks on LERF-
Mask dataset. Gaga outperforms previous approaches, showcasing favorable perfor-
mance in terms of mIoU and BIoU with both segmentation models. * denotes the
results are reported in [26].

Model 2D Seg. Method mIoU(%) mBIoU(%)

LERF [12]* / 37.17 29.30

Gaussian Grouping [26] EntitySeg 54.10 50.90
Gaga(Ours) 62.44 60.28

Gaussian Grouping [26]* SAM 72.79 67.58
Gaga(Ours) 74.71 72.19

Gaussian Grouping

Gaga

Rendered Segmentation Rendered Feature Field Prompt: paper napkin Prompt: bag of cookies

Fig. 5: Visual comparison on LERF-Mask dataset. Our rendered segmentation
exhibits fewer artifacts and delivers more accurate instance segmentation results. Visu-
alization of the rendered feature field via PCA demonstrates that Gaga obtains superior
identity encoding features.

segmentation with fewer artifacts and empty regions, indicating that our 3D-
aware mask association method provides multi-view consistent 2D segmentation
with less label ambiguity as pseudo labels for training the identity encoding. The
visualized identity encoding feature field of Gaga exhibits much cleaner results,
further supporting this observation. Hence, Gaga can provide a more precise
instance segmentation for queried 3D objects.

Table 2: Quantitative results on Replica and ScanNet datasets. Gaga performs
well with both 2D segmentation methods on two datasets. Notice that the performance
of Gaussian Grouping varies significantly with different 2D segmentation methods,
whereas Gaga consistently delivers stable performance.

2D Seg. Replica ScanNet
Model Method IoU(%) Precision(%) Recall(%) IoU(%) Precision(%) Recall(%)

Gaussian Grouping [26] EntitySeg 35.90 14.07 31.57 39.54 6.88 36.56
Gaga(Ours) 41.08 63.06 46.14 42.56 33.89 47.63

Gaussian Grouping [26] SAM 21.76 25.00 19.72 34.24 18.70 32.61
Gaga(Ours) 46.50 41.52 52.50 44.87 18.61 45.94
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RGB GG + EntitySeg Gaga + EntitySegGG + SAM Gaga + SAM Groud Truth

Fig. 6: Qualitative results on Replica and ScanNet datasets. Gaga provides
high-quality segmentation masks that are more similar to the ground truth. Gaussian
Grouping often covers the same object with different masks (rows 1, 4, 6), creates large
empty regions (rows 1-4), and misidentifies similar instances (rows 5, 6).

4.3 3D Segmentation on Replica and ScanNet Datasets

Tab. 2 presents the quantitative comparison results on the Replica and ScanNet
datasets. Gaga exhibits better performance on both datasets regardless of the
2D segmentation model utilized, showcasing its stability across different datasets
and models. Qualitative results are shown in Fig. 6. Rows 1-3 depict the visu-
alizations from the Replica dataset, while rows 4-6 showcase results from the
ScanNet dataset. Gaussian Grouping [26] frequently assigns different mask IDs
to the same object, resulting in inconsistent mask colors and empty regions.
Rows 5 and 6 illustrate that Gaussian Grouping struggles to distinguish similar
objects, whereas our proposed Gaga accurately identifies each object by lever-
aging 3D information.

4.4 3D Segmentation with Limited Data on Replica Dataset

To demonstrate the robustness of Gaga against changes in training image quan-
tity, we sparsely sample the Replica training set with ratios of 0.3, 0.2, 0.1, and
0.05. As depicted in Tab. 3, Gaga consistently exhibits superior performance
in terms of IoU, with approximately a 10% advantage using EntitySeg and a
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Table 3: Quantitative results on Replica dataset with limited training data.
Gaga consistently outperforms Gaussian Grouping with both 2D segmentation meth-
ods. The percentage of IoU drop indicates that Gaga exhibits greater robustness against
reductions in training data.

2D Seg. Method EntitySeg SAM
Model Training Data IoU(%) ↑ IoU Drop(%) ↓ IoU(%) ↑ IoU Drop(%) ↓

Gaussian Grouping [26] 30% 28.42 20.85 17.02 21.78
Gaga(Ours) 37.98 7.57 41.79 10.11

Gaussian Grouping [26] 20% 24.56 31.35 16.02 26.38
Gaga(Ours) 37.25 9.33 40.27 13.40

Gaussian Grouping [26] 10% 20.62 42.56 13.97 35.78
Gaga(Ours) 31.93 22.27 35.61 23.40

Gaussian Grouping [26] 5% 10.00 72.15 6.77 68.87
Gaga(Ours) 20.59 49.88 22.79 50.98

GagaGaussian GroupingRGBRGB GagaGaussian Grouping

Fig. 7: Qualitative results on Replica dataset with limited training data.
The visualizations depict samples when using only 5% of the training data (9 training
images). Even with limited data, Gaga consistently produces high-quality segmenta-
tion. In contrast, Gaussian Grouping struggles to track objects accurately and leaves
significant empty regions.

20% advantage using SAM. Remarkably, when utilizing SAM, Gaga surpasses
fully trained Gaussian Grouping with just 5% of the training data (22.79% vs.
21.76%). We also compute the IoU drop compared to using all training images
as follows:

IoU Drop(x) =
IoU(100%)− IoU(x%)

IoU(100%)
, (5)

where IoU(x%) denotes the IoU achieved when x% of the training data is used.
Compared to Gaussian Grouping, Gaga exhibits less sensitivity to decreases
in the number of training images, as evidenced by smaller values in IoU drop.
Visualization results are shown in Fig. 7. With just 5% of the training data, Gaga
can still deliver accurate segmentation masks, whereas Gaussian Grouping fails
to provide masks for a significant portion of objects due to inaccurate tracking.

4.5 3D Segmentation on MipNeRF 360 Dataset

We further showcase the performance of Gaga on diverse scenarios, i.e., the Mip-
NeRF 360 dataset, with SAM as 2D segmentation method. We provide visualiza-
tion comparison with Gaussian Grouping [26] in Fig. 8, rows 1-3. We display two
images for each scene to assess the consistency across different views. Gaga offers
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RGB Gaussian Grouping Gaga RGB Gaussian Grouping Gaga

View 1 View 2

Fig. 8: Qualitative results on the MipNeRF 360 dataset. Rows 1-3 show that
Gaga provides superior segmentation with finer details (rows 1, 2), fewer artifacts (row
1), and more consistent instance segmentation across different views (bicycle in row 3).
Rows 4-6 present results with sparsely sampled data. While Gaussian Grouping can
not accurately track objects (bicycle in row 4, bulldozer in row 5, stump and flowers
in row 6), Gaga consistently provides precise segmentation.

more detailed segmentation, while segmentation masks generated by Gaussian
Grouping exhibit severe artifacts. Additionally, inconsistency across two views
exists in the rendering results of Gaussian Grouping, as shown in row 3.

We sparsely sample the MipNeRF 360 dataset with sample step = 3 and
visualize the results in Fig. 8, rows 4-6. Similar to results in Fig. 7, Gaussian
Grouping can not accurately track objects with limited training data, resulting
in empty regions in rendered segmentation. Conversely, Gaga maintains accurate
segmentation, even for those tiny leaves in the "stump" scene in row 6.

4.6 Application: Scene Manipulation

Gaga achieves high-quality and multi-view consistent 3D segmentation, benefi-
cial for tasks like scene manipulation, as we can accurately segment the Gaussians
of a 3D object and edit their properties. Using a pre-trained 3D Gaussian model
with identity encoding, we employ the classifier trained with identity encoding to
predict mask labels for each 3D Gaussian. Subsequently, we select 3D Gaussians
sharing the same mask label as the target object and edit their properties for
tasks like object coloring, removal, and position translation.
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Before Editing Gaussian Grouping Gaga Before Editing Gaussian Grouping Gaga

Task: Move               closer to the windowTask: Change the cushion's color of               to maroon, remove

Fig. 9: Scene manipulation results on MipNeRF 360 and Replica datasets.
Gaga accurately identifies the cushion part of the footstool, whereas Gaussian Grouping
colors it entirely. For object removal and translation tasks, Gaga generates more precise
3D entities with fewer artifacts, resulting in better visual performance.

We demonstrate the effectiveness of this application on MipNeRF 360 and
Replica datasets (see Fig. 9). In the "room" scene of MipNeRF 360, we change the
color of the cushion in the footstool and remove the stuffed animal on the arm-
chair. Gaga accurately identifies 3D Gaussians representing the cushion, while
Gaussian Grouping [26] fails, colors the entire footstool maroon along with part
of the sofa and some floating Gaussians. Gaga also effectively groups and re-
moves the entire part of the stuffed animal on the sofa with minimal artifacts,
whereas Gaussian Grouping leaves many floating Gaussians. Similar results are
observed in the experiment involving the position shifting of a chair in the "of-
fice 3" scene of the Replica dataset. Notice that Gaussian Grouping also creates
artifacts at positions far away from the target object.

4.7 Ablation Study on Mask Association Method

We conduct ablation studies to evaluate the effectiveness of the proposed mask
association method on the Replica dataset. The baselines for comparison include:

1. w/o. Mask Association: Lifting inconsistent 2D masks to 3D.
2. Video Object Tracker : [26] is employed as a representative method.
3. Memory Bank (w. All Gaussians): Associating masks in the same manner

as Gaga, except that it selects all Gaussians splatted to the mask as its
corresponding Gaussians.

Table 4: Ablation study on different mask association methods. Our mask
association method with 3D-aware memory bank surpasses the previous video tracker
baseline on both IoU, Precision, and Recall.

Baseline IoU (%) Precision (%) Recall (%)

w/o. Mask Association 8.81 3.19 2.16
Video Object Tracker [26] 21.76 25.00 19.72
Memory Bank (w. All Gaussians) (Ours) 42.26 40.19 45.95
Memory Bank (w/o. Mask Partition) (Ours) 46.08 27.88 50.67
Memory Bank (Ours) 46.50 41.52 52.50
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RGB w/o. Mask Association Video Object Tracker Memory Bank
(w/o. Mask Partition)

Memory Bank Groud TruthMemory Bank
(w. All Gaussians)

Fig. 10: Visual comparison of different mask association methods. Gaga with
3D-aware memory bank achieves a superior visual quality, and closer to the ground
truth. Notice that the Video Object Tracker baseline mislabels the wall and floor,
Memory Bank (w. All Gaussians) mislabels the floor, and Memory Bank (w/o. Mask
Partition) baseline creates artifacts on the table and chairs.

4. Memory Bank (w/o. Mask Partition): Associating masks in the same manner
as Gaga, except that it does not partition the image and masks into patches.

5. Memory Bank : i.e., Gaga.

Quantitative results in Tab. 4 indicate that Gaga with the 3D-aware mem-
ory bank achieves superior performance with a 24.74%, 16.52%, and 32.78%
improvement on IoU, precision on recall, respectively, compared to the previous
method with video object tracker. Comparison with the Memory Bank (w. All
Gaussians) and Memory Bank (w/o. Mask Partition) baselines demonstrate the
effectiveness of our well-designed process for finding corresponding Gaussians of
each mask. We also show the visual comparison in Fig. 10.

5 Conclusions

We introduce Gaga, a framework that reconstructs and segments open-world
3D scenes by utilizing inconsistent 2D masks predicted by zero-shot segmen-
tation models. Gaga employs a 3D-aware memory bank to store the indices of
pre-trained 3D Gaussians and establishes mask association across different views
by identifying the overlap between Gaussians that are projected to each mask.
Results on various datasets demonstrate that Gaga outperforms previous meth-
ods with superior segmentation accuracy, multi-view consistency, and reduced
artifacts. Additionally, application in scene manipulation highlights Gaga’s high
segmentation accuracy and practical utility.
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Appendix

In this appendix, we provide further experimental results, including a qualitative
comparison with GARField [13], additional results on scene manipulation and
sparse view setting in Sec. B. We then delve into more experimental details of
the datasets, metrics, and implementation in Sec. C. Additional ablation studies
are shown in Sec. D and limitations are discussed in Sec. E.

A Supplementary Video

Please watch the supplementary demo video for a comprehensive introduction
and visual comparison between our method Gaga and the current state-of-the-art
methods. The video features additional qualitative comparisons and an anima-
tion illustration of our method.

B Supplementary Experiments

B.1 Results Compared with GARField

We provide comparison results with GARField in Fig. 11. GARField follows a
hierarchical grouping pipeline. It extracts densely sampled segmentation masks
from SAM [14] and trains a feature field using contrastive loss for grouping. If
two rays fall into the same SAM mask, their features will be pulled together.
Otherwise, features are pushed apart.

We use the default setting to train GARField. For a fair comparison, Gaga
also uses the 2D segmentation masks provided by SAM. Visualization results
show that Gaga provides segmentation masks with better quality and multi-
view consistency. Whereas GARField does not provide multi-view consistent
segmentation, and it also has inferior RGB rendering results.

RGB

Segmentation

GARField Gaga

Fig. 11: Qualitative comparison with GARField on Replica dataset. Gaga
renders higher-quality RGB and segmentation masks in significantly less time. It’s
worth noting that in the segmentation masks generated by GARField, the same colors
are used multiple times for different masks, meaning one mask label may contain mul-
tiple groups representing different 3D instances.



Gaga 19

Before Editing Gaussian Grouping Gaga Before Editing Gaussian Grouping Gaga

Task: Change the color of flowerpot to cyan, duplicate the glass jar Task: Change the color duck to blue, remove the red toy chair

Fig. 12: Scene manipulation results on MipNeRF 360 and LERF-Mask
datasets. Gaga accurately identifies the flowerpot without affecting the color of the
plant. Notice that Gaussian Grouping creates a cyan region on the wooden door behind.
For the object removal and duplication tasks, Gaga can also provide more accurate re-
sults with fewer artifacts.

After training, GARField employs a hierarchical grouping pipeline to clus-
ter each pixel into groups and generates segmentation masks. This hierarchical
structure comprises 41 levels, and it takes approximately 20 minutes to output
segmentation masks for a single image. In contrast, Gaga renders segmentation
for one image under 0.5 seconds.

B.2 Additional Results on Scene Manipulation

We provide additional results for the downstream scene manipulation task to
further demonstrate the prospect of applying Gaga to real-world scenarios. On
the "counter" scene of the MipNeRF 360 dataset [1], we change the color of the
flowerpot to cyan and duplicate the glass jar. Gaussian Grouping [26] can not
differentiate the plant and flowerpot, whereas Gaga generates a more accurate
segmentation mask. Additionally, Gaga produces a clearer boundary and avoids
artifacts on the iron tray when duplicating the glass jar.

In the "figurines" scene of the LERF-Mask dataset [26], we transform the
yellow duck to blue and remove the red toy chair. Gaga precisely changes only
the duck’s color without affecting other objects, and achieves a more thorough
removal of the red toy chair.

B.3 Additional Results on Sparsely Sampled Replica Dataset

We provide additional qualitative results for the experiment on the sparsely
sampled replica dataset in Fig. 13. As the number of training images decreases,
Gaussian Grouping produces more empty regions, e.g ., the sofa and the wall, due
to difficulties in accurate tracking under sparse views. Whereas Gaga exhibits a
more robust performance against reductions in the number of images.
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Gaga + SAMGaga + EntitySegGG + SAMGG + EntitySeg

RGB

100 %

30 %

20 %

10 %

5 %

Ground Truth

Fig. 13: Qualitative results on the sparsely sampled Replica dataset. We
showcase the novel view synthesis segmentation rendering results provided by Gaussian
Grouping and Gaga as the percentage of training images employed decreases from
100% to 5%. Gaussian Grouping cannot correctly track the sofa under sparse views
and fails to differentiate ceiling and wall, whereas Gaga consistently provides high-
quality segmentation results.

C Experimental Details

C.1 Details on Datasets

Replica Dataset [23]. We select 8 scenes from the entire Replica dataset the
same as [27]. We use the rendered results provided by authors of [27] and follow
their data processing process: for each scene, we uniformly select 20% images as
training data and 20% images as test data from all rendered RGB images. This
results in 180 training images and 180 test images for each scene.
Sparsely Sampled Replica Dataset. For the same 8 scenes as the previ-
ous experiment, we randomly sample 30%, 20%, 10%, and 5% of the total 180
training images, resulting in 54, 36, 18, and 9 training images for each task,
respectively. The number of test images remains at 180.
ScanNet Dataset [8]. DM-NeRF [24] selects 8 scenes from the entire ScanNet
dataset. Each scene has approximately 300 images for training and about 100
images for testing. We utilize 7 out of the 8 scenes, excluding "scene 0024_00"
due to the subpar 3D reconstruction results in both Gaussian Splatting [11] and
Gaussian Grouping [26].
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Table 5: Selected scenes in Replica and ScanNet datasets. We select 8 scenes
from the Replica dataset following [27], and 7 scenes from the ScanNet dataset follow-
ing [24].

Dataset Scene Name

Replica [23] office 0 office 1 office 2 office 3
office 4 room 0 room 1 room 2

ScanNet [8] scene 0010_00 scene 0012_00 scene 0033_00 scene 0038_00
scene 0088_00 scene 0113_00 scene 0192_00

MipNeRF 360 Dataset [1]. We downsample the images by a factor of 4
to accommodate the large size of the original images. For novel view synthesis
evaluation, we set the sample step at 8, the same as the setting in [11].

We employ the official script from Gaussian Splatting [11] for colmap to ac-
quire camera poses and the initial point cloud. Consequently, the actual number
of images utilized in the experiment might be lower than expected due to colmap
process failures. Please refer to Tab. 5 for the scene names used in the Replica
and ScanNet datasets.

C.2 Details on Evaluation Metrics

Given the disparate mask label assignments between the ground truth segmen-
tation and the predicted segmentation for 3D objects, we find the best linear
assignment between the labels based on IoU for quantitative evaluation. Subse-
quently, we employ IoU > 0.5 as the criterion for precision and recall calculations.
We outline the pseudocode for the evaluation procedure in Algorithm 1.

C.3 Further Implementation Details

For training vanilla 3D Gaussians, we maintain the same parameter setting
as [11]. To train the identity encoding, we freeze all the other attributes of
Gaussians and use the same parameter setting as [26]. The identity encoding
has 16 dimensions, and the rendered 2D identity encoding is in the shape of 16
× h × w, where h and w represent the height and width of the image. The same
classifier is utilized for predicting mask ID given the 2D identity encoding and
selecting Gaussians for editing given the 3D identity encoding. It has 16 input
channels and the number of output channels equals the number of groups in the
3D-aware memory bank after the mask association process for all images. All
datasets are trained on a single NVIDIA RTX 6000 Ada GPU.

D Supplementary Ablation Studies

We conduct additional ablation studies on three parameters involved in the pro-
cess of mask association and find corresponding Gaussians of a mask. These
ablation studies are performed on the Replica dataset [23], utilizing SAM [14]
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Algorithm 1 Evaluation Metrics
Input pred_masks and gt_masks are represented in binary format with shape
(nimage, nmask, h, w), where nimage is the number of test images, nmask is the
number of predicted or ground truth masks, h, w are the height and width of
test images.
We use scipy.optimize.linear_sum_assignment to solve the linear assign-
ment problem.

Function evaluate(pred_masks, gt_masks)
Input: pred_masks (torch.bool), gt_masks (torch.bool)
Output: iou (torch.float), precision (torch.float), recall (torch.float)

assert len(gt_masks) == len(pred_masks)
nimage ← len(gt_masks)
npred ← pred_masks.shape[1]
ngt ← gt_masks.shape[1]
iou_matrix ← torch.zeros((ngt, max(ngt, npred)))
for i in ngt do

for j in npred do
iou_list ← []
for k in nimage do

iou_list.append(IoU(gt_masks[k][i], pred_masks[k][j]))
end for
iou_matrix[i][j] ← iou_list.mean()

end for
end for
gt_indices, pred_indices ← linear_assignment(iou_matrix)
paired_iou ← iou_matrix[gt_indices][pred_indices]
iou ← paired_iou.mean()
ncorrect ← torch.sum(paired_iou > 0.5)
precision ← ncorrect

npred

recall ← ncorrect
ngt

return iou, precision, recall
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Table 6: Ablation study on the percentage of front Gaussians. Results for
selecting 10%, 20%, 30%, and 100% of front Gaussians as corresponding Gaussians
of a mask are presented below. Gaga demonstrates stable performance across varying
parameters, showcasing its robustness.

Perc. Front Gaussians (%) IoU (%) Precision (%) Recall (%)

10 46.42 39.57 51.54
20 * 46.50 41.52 52.50
30 45.73 42.31 50.88
100 42.26 40.19 45.95

Table 7: Ablation study on image partition. We partition the entire image and its
masks into patches to prevent the selected corresponding Gaussians from concentrating
in a confined region. Comparison results show that Gaga can perform well as long as
the partition process is employed.

Num. Patches IoU (%) Precision (%) Recall (%)

1 × 1 46.08 27.88 50.67
16 × 16 46.11 38.22 51.62
32 × 32 * 46.50 41.52 52.50
64 × 64 44.72 40.65 49.14

as the 2D segmentation model. Parameters denoted with * are used as the de-
fault setting. We also provide additional visual comparison results for the mask
association methods utilized by Gaussian Grouping [26] and Gaga in Sec. D.4.

D.1 Percentage of Front Gaussians

We present the ablation study on the percentage of front Gaussians selected as
corresponding Gaussians in Tab. 6. We choose 10%, 20%, 30%, and 100% (i.e.,
selecting all Gaussians splatted to the mask as its corresponding Gaussians) as
candidate parameters. The default setting (20%) has a better performance in
general. Gaga shows stable performance for all candidate parameters, indicating
its robustness and it does not rely on cautious parameter selection.

D.2 Number of Image Patches During Partition

We provide the ablation study on the number of image patches used during the
image partition process in Tab. 7. Candidate parameters include 1 × 1 (without
mask partition process), 16 × 16, 32 × 32, 64 × 64. Similar to the results in
Tab. 6, Gaga remains insensitive to the choice of this parameter as long as the
image partition process is in place. Without the mask partition process, there is
a significant drop in precision.

D.3 Overlap Threshold

During the group ID assigning process, if none of the existing groups in the
memory bank has a larger overlap with the current mask than the threshold,
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Table 8: Ablation study on the overlap threshold. If the overlap between the
current mask and all groups in the memory bank falls below this threshold, we add this
mask to the memory bank as a new group. Results indicate that the default setting of
0.1 generally yields better outcomes.

Overlap Threshold IoU (%) Precision (%) Recall (%)

0.01 43.86 44.99 48.98
0.1 * 46.50 41.52 52.50
0.2 47.57 34.77 52.40

we incorporate this mask into the memory bank as a new group, signifying the
discovery of a new 3D object. We present the ablation study on overlap threshold
in Tab. 8. When the threshold is set to 0.01, we rarely establish a new group
and prefer to associate the mask with an existing group. It provides the best
precision but at the expense of inferior IoU performance. Conversely, setting the
threshold to 0.2 results in a frequent declaration of new group IDs, yielding the
best IoU but a significant decrease in precision. Therefore, we set the threshold
to 0.1 to strike a balance in performance across all three metrics.

D.4 Additional Comparison on Mask Association Methods

We present visual comparison results for two mask association methods, video
object tracker [6] utilized by [26] and Gaga’s 3D-aware memory bank, in Fig. 14.
In the "garden" scene of the MipNeRF 360 dataset, the video object tracker
struggles to track objects in the background, whereas the 3D-aware memory bank
provides associated results for each mask. For the scene in the ScanNet dataset,
the video tracker fails to distinguish between four identical sofas, resulting in
multiple masks for the same object. Additionally, it assigns different mask IDs
to the table in two views. In contrast, the 3D-aware memory bank precisely
locates each object, leading to improved mask association results and better
pseudo labels for training segmentation features.

E Limitations

Though Gaga achieves state-of-the-art performance compared to existing works,
there are a few limitations and future works. First, the optimization process of
identity encoding and the rest of the Gaussian parameters are independent, this
is because we need to first train 3D Gaussians to acquire their spatial location
for mask association. While this pipeline allows for the utilization of any pre-
trained 3D Gaussians as input without the need to re-train the entire scene, it
does require additional training steps. We aim to enable the joint processing of
mask association and identity encoding training in future works.

Secondly, artifacts may occur in the segmentation rendered by Gaga due to
inherent inconsistency in the 2D segmentation. For example, an object might
be depicted as two separate masks in the initial view but as one entire mask in
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Fig. 14: Visual comparison between different mask association methods. Our
3D-aware memory bank offers more detailed associated masks. It accurately tracks
identical objects in the scene and assigns them different mask IDs. Conversely, the
video object tracker leaves empty regions in positions where it cannot track masks,
and it struggles to provide consistent mask ID for the same object across views.

subsequent views. This ambiguity introduces challenges to our mask association
process. Preprocessing steps such as dividing, merging, or reshaping the 2D
segmentation masks could potentially resolve this issue and improve grouping
results.
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