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Figure 1. Gaga groups any Gaussians in an open-world 3D scene and renders multi-view consistent segmentation (pixels of the same
region across views are represented with the same color). By employing a 3D-aware memory bank, we eliminate the label inconsistency
that exists in 2D segmentation predicted by foundational models and assign each mask across different views a universal group ID. This
enables the process of lifting 2D segmentation to a consistent 3D segmentation. Gaga produces accurate 3D object segmentation, achieving
high-quality results for downstream applications such as scene manipulation (e.g. changing the cushion’s color of the footstool to maroon).

Abstract

We introduce Gaga, a framework that reconstructs and seg-
ments open-world 3D scenes by leveraging inconsistent 2D
masks predicted by zero-shot class-agnostic segmentation
models. Contrasted to prior 3D scene segmentation ap-
proaches that rely on video object tracking or contrastive
learning methods, Gaga utilizes spatial information and
effectively associates object masks across diverse camera
poses through a novel 3D-aware memory bank. By elimi-
nating the assumption of continuous view changes in train-
ing images, Gaga demonstrates robustness to variations in
camera poses, particularly beneficial for sparsely sampled
images, ensuring precise mask label consistency. Further-
more, Gaga accommodates 2D segmentation masks from

diverse sources and demonstrates robust performance with
different open-world zero-shot class-agnostic segmentation
models, significantly enhancing its versatility. Extensive
qualitative and quantitative evaluations demonstrate that
Gaga performs favorably against state-of-the-art methods,
emphasizing its potential for real-world applications such
as 3D scene understanding and manipulation.

1. Introduction
Effective open-world 3D segmentation is essential for scene
understanding and manipulation. Despite notable advance-
ments in 2D open-world segmentation techniques, exempli-
fied by Segment Anything (SAM) [16] and EntitySeg [23],
extending these methodologies to the realm of 3D encoun-
ters the challenge of ensuring consistent mask label assign-
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Figure 2. Comparison of rendered segmentation. Contrastive
learning-based methods, such as OmniSeg [33], do not provide
unique mask labels to each segmentation group, leading to incon-
sistencies across multiple views (e.g., the coffee table). Gaussian
Grouping [32] addresses multi-view segmentation by utilizing a
video tracker, but it often misidentifies objects when similar items
are present (e.g., the leather sofa) and struggles with significant
camera perspective changes. In contrast, Gaga ensures multi-view
consistent segmentation masks, overcoming these limitations.

ment across multi-view images. Specifically, masks of the
same object across different views may have different mask
label IDs, as the 2D class-agnostic segmentation model in-
dependently processes the multi-view images. Naively lift-
ing these inconsistent 2D masks to 3D introduces ambiguity
and leads to inferior results in 3D scene segmentation.

Existing works [9, 11, 15, 32, 33] address this issue ei-
ther by contrastive learning or video object tracking. One
line of works build upon 3D scenes represented as 3D Gaus-
sians [13]. In this approach, a feature vector is learned for
each 3D Gaussian through a contrastive learning paradigm.
The method encourages similar features for 3D Gaussians
whose projections fall within the same segmentation mask,
while pushing apart those belonging to different segmen-
tation regions. Segmentation maps for each view are then
obtained by clustering these feature vectors. However, these
methods do not assign a specific mask label to each 3D seg-
mentation group, resulting in inconsistent multi-view seg-
mentation, as shown in Fig. 2. Alternatively, some meth-
ods [11, 32] tackle multi-view inconsistency in 3D scene
segmentation by treating multi-view images as a video se-
quence and adopting an off-the-shelf video object track-
ing method [7]. Nevertheless, this design assumes minimal
view changes between multi-view images—a condition that
may not always hold in real-world 3D scenes, particularly
when input views are sparse. Consequently, these methods
often struggle with similar objects or occluded objects that
intermittently disappear and reappear in the sequence, as
shown in Fig. 2.

In this paper, we identify a fundamental limitation in
existing open-world 3D scene segmentation methods that
leads to 3D inconsistency: the inadequate exploitation of
3D information inherently provided by the scene. Our main
intuition is that masks of the same object across different

views shall correspond to the same group of 3D Gaussians.
Hence, we can assign identical universal mask IDs to masks
from different views when there is a large overlap between
their corresponding 3D Gaussian groups.

Based on this intuition, we propose Gaga, which groups
any 3D Gaussians and renders consistent 3D class-agnostic
segmentation across different views. Given a collection of
posed RGB images, we first employ Gaussian Splatting [13]
to reconstruct the 3D scene and extract 2D masks using an
open-world segmentation method [16, 23]. Subsequently,
we iteratively build a 3D-aware memory bank that collects
and stores the Gaussians grouped by category. For each
input view, we project each 2D mask into 3D space us-
ing camera parameters and search the memory bank for the
category with the largest overlapping with the unprojected
mask. Based on the degree of overlapping, we either as-
sign the mask to an existing category or create a new one.
Finally, following the mask association process described
above, we can get a set of multi-view consistent 2D segmen-
tation masks. Finally, we learn a feature vector (i.e., identity
encoding [32]) for each 3D Gaussian that encodes its cate-
gory information. Specifically, we splat the feature vectors
onto 2D image and decode a segmentation map through a
linear layer. The predicted masks are then compared with
the segmentation masks obtained from our 3D-aware mem-
ory bank for supervision. This approach ensures that our
identity encoding remains multi-view consistent, thanks to
the consistent segmentation masks across different view-
points. Our contributions include:
• We propose a framework that reconstructs and segments

3D scenes using inconsistent 2D masks generated by
open-world segmentation models.

• To resolve the inconsistency of 2D masks across views,
we design a 3D-aware memory bank that collects Gaus-
sians of the same semantic group. This memory bank is
then employed to align 2D masks across diverse views.

• We show that the proposed method can effectively lever-
age any 2D class-agnostic segmentation masks, making
it readily applicable for synthesizing novel view images
and segmentation masks.

• Comprehensive experiments on diverse datasets and chal-
lenging scenarios, including sparse input views, demon-
strate the effectiveness of the proposed method both qual-
itatively and quantitatively.

2. Related Work
Segment and Tracking Anything in 2D. Segment Any-
thing (SAM) [16] and EntitySeg [23] demonstrate the effec-
tiveness of large-scale training in image segmentation, thus
establishing a pivotal foundation for open-world segmenta-
tion methods. Subsequent studies [7, 8, 31] further extend
the applicability of SAM to video data by leveraging video
object segmentation algorithms to propagate SAM masks.
Conversely, acquiring data for training their 3D counter-
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parts poses a challenge, given that existing large-scale 3D
datasets with annotated segmentation [10, 27] primarily fo-
cus on indoor scenarios.
NeRF-based 3D Segmentation. Neural Radiance Fields
(NeRFs) [21] model scenes as continuous volumetric func-
tions, learned through neural networks that map 3D co-
ordinates to scene radiance. This approach facilitates the
capture of intricate geometric details and the generation
of photorealistic renderings, offering novel view synthe-
sis capabilities. Semantic-NeRF [35] initiates the incor-
poration of semantic information into NeRFs and enables
the generation of semantic masks for novel views. Note
that semantic segmentation masks do not face the challenge
of ambiguous mask ID across views. Numerous methods
expand the scope by introducing instance modeling and
matching instance masks relying on existing 3D bounding
boxes [12, 20], resorting to the cost-based linear assignment
during training [26, 29] or directly training instance-specific
MLPs [17]. However, most of these methods are developed
based on ground truth segmentation and tailored for scene
modeling within specific domains. They often entail high
computational costs and lack substantial evidence of their
performance in open-world scenarios.

Leveraging SAM’s open-world segmentation capability,
SA3D [3] endeavors to recover a 3D consistent mask by
tracing 2D masks across adjacent views with user guid-
ance. Similarly, Chen et al. [6] distill SAM encoder fea-
tures into 3D and query the decoder. In contrast, Gaga
achieves multi-view consistency without user intervention,
offering segmentation for all objects rather than an instance.
Garfield [15] densely samples SAM masks and trains a
scale-conditioned affinity field supervised on the scale of
each mask deprojected to 3D. However, this work focuses
on 3D clustering rather than segmentation.
Gaussian-based 3D Segmentation. As an alternative to
NeRF and its variants [4, 21, 22, 28], Gaussian Splat-
ting [5, 13, 30, 34] has recently emerged as a powerful ap-
proach to reconstruct 3D scenes via real-time radiance field
rendering. By representing the scene as 3D Gaussians from
posed images, it achieves photorealistic novel view synthe-
sis with high reconstruction quality and efficiency. Addi-
tionally, manipulating 3D Gaussians for scene editing is
more straightforward compared to NeRF’s representation.

SAGA [2] renders a 2D SAM feature map and uses a
SAM guidance loss to learn 3D segmentation from the am-
biguous 2D masks. Similar to [3], this method requires
user input and only provides segmentation for one object
at a time. Feature 3DGS [36] distills LSeg [18] and SAM
features to 3D Gaussians and decodes rendered features to
obtain segmentation. However, it fails to provide consis-
tent segmentation across views. Gaussian Grouping [32]
and CoSSegGaussians [11] use a video object tracker [7] to
associate masks across different views. However, in sce-

narios with significant changes in camera poses between
frames, such approaches struggle to maintain accuracy.
OmniSeg3D [33] and Click-Gaussians [9] use contrastive
learning-based method to attach each Gaussian with a fea-
ture, while the features of two Gaussians are encouraged to
be similar if their projections are within the same segmen-
tation mask. However, such methods do not provide seg-
mentation mask labels for each segmented Gaussian group.

3. Proposed Method
3.1. Preliminaries
Gaussian Splatting. Gaussian Splatting [13] has signif-
icantly advanced the 3D representation field by combin-
ing the benefits of implicit and explicit 3D representations.
Specifically, a 3D scene is parameterized by a set of 3D
Gaussians {Gi}. Each Gaussian Gi = {pi, si, qi, αi, ci} is
defined by its position pi = {x, y, z} ∈ R3, scale si ∈ R3,
orientation q ∈ R4, opacity α ∈ R and color features c
encoded by spherical harmonics (SH) coefficients.

Gaussian Splatting employs the splatting pipeline,
wherein 3D Gaussians are projected onto the 2D image
space using the world-to-frame transformation matrix cor-
responding to each camera pose. Gaussians projected to the
same coordinates (x, y) (represented as i ∈ N ) are blended
in depth order and weighted by their opacity α to produce
the color cx,y of each pixel:

cx,y =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj). (1)

Identity Encoding. Identity encoding (ei) [32] aims to as-
sign a universal label to each 3D Gaussian for 3D scene
segmentation. An identity encoding is a 16-dimensional
feature vector attached to a 3D Gaussian. It can be decoded
to a segmentation mask ID through a combination of lin-
ear and SoftMax layers. The segmentation label of a pixel
(denoted as mx,y) can then be computed by:

mx,y = argmax{L(
∑
i∈N

eiαi

i−1∏
j=1

(1− αj))}. (2)

The learning process for identity encoding involves opti-
mizing the feature vectors by comparing the rendered masks
with the ground truth 2D segmentation masks.

3.2. Grouping via 3D-aware Memory Bank
Given a set of posed images, we aim to reconstruct a 3D
scene with semantic labels for segmentation rendering. To
this end, we first leverage Gaussian Splatting for scene re-
construction. We then employ open-vocabulary 2D seg-
mentation methods such as SAM [16] or EntitySeg [23] to
predict class-agnostic segmentation for each input view.

However, because the segmentation model processes
each input view independently, the resulting masks are not
naturally multi-view consistent. To resolve this issue, exist-
ing works [11, 32] carry out a mask association process that
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Figure 3. Overview of Gaga. Gaga reconstructs 3D scenes using Gaussian Splatting and adopts any open-world model to generate 2D
segmentation masks. To eliminate the 2D mask label inconsistency, we design a mask association process, where a 3D-aware memory
bank is employed to assign a consistent group ID across different views to each 2D mask based on the 3D Gaussians projected to that mask
(Sec. 3.2). Specifically, we find the corresponding Gaussians projected to 2D mask and assign the mask with the group ID in the memory
bank with the maximum overlapped Gaussians (Eq. 5) After 3D-aware mask association process, we use masks with multi-view consistent
group IDs as pseudo labels to train an identity encoding on each 3D Gaussian for segmentation rendering.

tries to consolidate inconsistent segmentation masks from
different views. For example, GaussianGrouping [32] and
CoSSegGaussians [11] apply a video tracker to associate
inconsistent 2D masks of different views, assuming similar-
ity between nearby input views. This assumption, however,
may not hold for all 3D scenes, particularly when the input
views are sparse, as demonstrated in Fig. 2.

Gaga is inspired by the fundamental disparity between
the task of mask association across multiple views and ob-
ject tracking in a video: the latter does not exploit 3D infor-
mation in the scene. To reliably generate consistent masks
across different views, we propose a method that leverages
3D information without relying on any assumptions about
the input views. Our key insight is that masks belonging
to the same object in different views shall correspond to
the same Gaussians in the 3D space. Consequently, these
Gaussians should be grouped together and assigned with an
identical group ID.

Corresponding Gaussians of Mask. Based on this intu-
ition, we first associate each 2D segmentation mask with its
corresponding 3D Gaussians. Specifically, we splat all 3D
Gaussians onto the camera frame, using the camera pose of

each input view. Subsequently, for each mask within the im-
age, we identify 3D Gaussians whose centers are projected
within that mask. Those Gaussians should be identified as
representatives of the mask in 3D and can be used as guid-
ance for associating masks from different views.

Notably, 2D segmentation masks typically describe the
shape of foreground objects as observed from the current
camera view. However, a significant proportion of Gaus-
sians do not contribute to the pixels in the 2D segmentation
mask, as they represent objects in the far back of the 3D
scene. In Fig. 4, we show one example in column 3.

To address this challenge, we propose incorporating
depth information as guidance to select Gaussians corre-
sponding to foreground objects. We first render the depth
map for each view. Given a mask m in that view, we extract
the corresponding depth values, denoted as D, and compute
its minimum and maximum depths, Dmin and Dmax, re-
spectively. To mitigate the impact of inaccurate masks, we
filter out outlier depths using the following procedure. We
compute the first quartile (Q1) and third quartile (Q3) as:

Q1 = Quantile(D, 0.25), Q3 = Quantile(D, 0.75). (3)
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Figure 4. Corresponding Gaussians with Depth Guidance. In
View 1, we select Gaussians (colored in red) that are splatted in-
side the mask of the bulldozer. As shown in column 3, some of
these Gaussians not only belong to the bulldozer but also repre-
sent background objects, as seen in View 2. To refine the selection,
we render the depth map and retain only the Gaussians within the
specified depth region, ensuring they correspond to the bulldozer’s
mask. As shown in column 4, the final selection with depth guid-
ance consists primarily of Gaussians belonging to the bulldozer.

The interquartile range (IQR) is then defined as IQR =
Q3 − Q1. To refine the depth range, we define the maxi-
mum inlier depth as Dmax inlier = Q3 + f · IQR, where f
is the outlier factor, set to 1.0 if not explicitly defined. The
inliers’ depth range is then given by:

S = {z ∈ P | Dmin < z < Dmax inlier}. (4)

Finally, we select Gaussians that are projected within mask
m and lie inside the inlier depth range S as the correspond-
ing Gaussians for mask m. As shown in Fig. 4 (column
4), this approach produces a more accurate representation
of the foreground objects, as it takes into account the spatial
distribution of the Gaussians relative to the camera pose. By
leveraging depth information, we can effectively filter out
Gaussians that do not contribute to the foreground objects,
thereby improving the accuracy of our 3D segmentation.
3D-aware Memory Bank. Next, to collect and categorize
3D Gaussians into groups and use them to associate masks
across different views, we introduce a 3D-aware Memory
Bank (see Fig. 3). Given a set of images, we initialize
the 3D-aware Memory Bank by storing the corresponding
Gaussians of each category in the first image into an indi-
vidual group and labeling each mask with a group ID the
same as its mask label. For each 2D mask of the subse-
quent view, we first determine its corresponding Gaussians
as outlined above. We then either assign these Gaussians
to an existing group within the memory bank or establish a
new one if they do not share similarities with existing cate-
gories in the memory bank. In the following, we elaborate
on the details of this assignment process.
Group ID Assignment via Gaussian Overlap. To assign
each mask a group ID, we aim to find if the current mask
has a significant amount of overlapped Gaussians with any
groups in the memory bank. We define the similarity be-
tween two sets of 3D Gaussians based on their shared 3D

Gaussian ratio. Specifically, given the 3D Gaussians corre-
sponding to a 2D mask m (denoted as G(m) as described
above) and the Gaussians of category i (denoted as Gi) in
the memory bank, we identify their shared Gaussians as
G(m) ∩ Gi (i.e., Gaussians of the same indices), we then
compute the overlap as the ratio of the number of shared
Gaussians to number of all Gaussians within mask m:

Overlap(m, i) =
#(G(m) ∩ Gi)

#G(m)
. (5)

Note that we do not use the IoU of G(m) and Gi for the fol-
lowing reason: as more frames are processed, more Gaus-
sians will be added to the memory bank, which means that
Gi will become larger. Consequently, the IoU threshold
needs to be adjusted frequently. In contrast, our overlapping
formulation in Eq. 5 is independent of Gaussian number in
the memory bank, avoiding manual threshold adjustment.

Suppose category i has the highest overlap with mask m
among all categories in the memory bank, and this overlap
value is above a threshold. In this case, we assign the group
ID of mask m as i and add the non-overlapped Gaussians
in the ith category by Gi = Gi ∪ G(m). We establish a
new group ID j if none of the existing groups contains an
overlap with mask m above the overlapping threshold. We
add G(m) into this new category in the Gaussian memory
bank and assign mask m with the new group ID j. Note that
we ensure each Gaussian is added to only one group in the
memory bank by tracking all the Gaussian indices already
in the memory bank.

3.3. 3D Segmentation and Applications.
After the group ID assigning process, masks projected by
the same group of Gaussians are supposed to have the same
group ID across different views. We splat the group IDs of
3D Gaussians in the memory bank to obtain pseudo ground
truth segmentation masks, which are used to learn a 16-
dimension feature vector (i.e., identity encoding [32]) for
each Gaussian. Specifically, we initialize the identity en-
coding to all zeros for each 3D Gaussian. At each train-
ing iteration, we splat the identity encoding given a camera
pose to formulate a 2D feature map. A linear layer followed
by a SoftMax function are employed to predict a 2D seg-
mentation map given the rendered feature map. Finally, we
compute the Cross Entropy loss between the predicted seg-
mentation maps and those obtained by rendering Gaussians
in the memory bank, as discussed above.

After training, our segmentation-aware 3D Gaussians
can be readily used for various downstream applications.
For instance, we can render segmentation masks of novel
views with consistent semantic labels for the same object
across different camera poses. Furthermore, Gaussians can
also be selected using their identity encoding and manipu-
lated for 3D scene editing tasks, including removal, color-
changing, position translation, etc., as will be demonstrated
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in Sec. 4.6 and supplementary material.

4. Experiments
4.1. Experimental Setup
Datasets. We experiment with various datasets across di-
verse scenarios to demonstrate the performance of Gaga.
For quantitative comparison, we use a scene understand-
ing dataset LERF-Mask [32], along with two indoor scene
datasets: Replica [27] and ScanNet [10]. Additionally,
we showcase the robustness of Gaga against variations in
training image quantity by sparsely sampling the Replica
dataset. We present visual comparison results on the com-
monly used scene reconstruction dataset, MipNeRF 360 [1].
The quantitative and qualitative evaluations are conducted
on the test set, i.e., novel view synthesis results. Details
about datasets can be found in the supplementary material.
Evaluation Metrics. Similarly to prior work [32], mIoU
and boundary IoU (mBIoU) are used to evaluate the LERF-
Mask dataset. To evaluate the multi-view consistency of
3D segmentation masks, we select eight scenes from the
Replica dataset and seven scenes from the ScanNet dataset
and use the ground-truth panoptic segmentation for evalu-
ation, disregarding class information. The evaluation pro-
cess is detailed in the supplementary material. Note that
only Gaussian Grouping and Gaga provide 3D mask IDs to
render multi-view consistent segmentation masks, we only
compare these two methods. To handle differences between
predicted and ground truth mask labels, we calculate the
best linear assignment based on IoU. Moreover, with IoU =
0.5 as the criterion, we report precision and recall to further
evaluate the accuracy of predicted masks. Please note that
all numbers in the tables are expressed as percentages.
Implementation Details. We use SAM [16] and Entity-
Seg [23] with the Hornet-L backbone to obtain open-world
2D segmentation. We preprocess the generated raw masks
following the method outlined in [23], prioritizing those
with higher confidence scores by ranking them accordingly.
Masks with confidence scores below 0.5 are discarded. For
all experiments, we train vanilla Gaussian Splatting [13] for
30K iterations and train the identity encoding for 10K it-
erations with all other parameters frozen. We train base-
line methods following their official guidance for 40K iter-
ations for fair comparisons. We set the overlap threshold for
declaring a new group ID as 0.1.

4.2. Open-vocabulary 3D Query on LERF-Mask
We compare our method with 6 state-of-the-art methods on
3D scene understanding: LERF [14], LEGaussians [25],
LangSplat [24], SA3D [3], Gaussian Grouping [32] and
OmniSeg3D [33]. The first three methods focus on CLIP
feature embedding. We calculate the relevancy between
rendered CLIP features and query text features following
their official implementation. The last three methods lever-
age 2D segmentation masks predicted by SAM [16]. Since

figurines ramen teatime
Model mIoU mBIoU mIoU mBIoU mIoU mBIoU

SA3D [3]* 24.9 23.8 7.4 7.0 42.5 39.2
LERF [14]* 33.5 30.6 28.3 14.7 49.7 42.6
LEGaussians [25] 34.6 32.6 31.4 18.8 42.8 35.3
LangSplat [24] 61.9 60.9 61.9 54.7 59.8 52.7
Gaussian Grouping [32]* 69.7 67.9 77.0 68.7 71.7 66.1
OmniSeg3D [33] 85.0 83.7 83.6 75.5 69.8 63.8
Gaga (Ours) 92.3 90.8 72.0 63.3 71.2 68.4

Table 1. Quantitative results for 3D query tasks on LERF-
Mask. Gaga outperforms previous approaches, showcasing fa-
vorable performance in mIoU and BIoU with SAM. * denotes the
results are reported in [32].

Gaussian Grouping

Prompt: paper napkin

Prompt: bag of cookies

LanSplatLEGaussians GagaOmniSeg3D

Figure 5. Qualitative results on LERF-Mask. Our rendered seg-
mentation exhibits fewer artifacts and delivers more accurate seg-
mentation results than both prior 3D class-agnostic segmentation
works and language embedding works.

2D Seg. Replica ScanNet
Model Method IoU Precision Recall IoU Precision Recall

GG [32] EntitySeg 35.90 14.07 31.57 39.54 6.88 36.56
Gaga (Ours) 41.45 59.74 45.59 43.08 35.46 49.73

GG [32] SAM 21.76 25.00 19.72 34.24 18.70 32.61
Gaga (Ours) 46.21 39.53 50.62 45.06 22.88 51.02

Table 2. Quantitative results on Replica and ScanNet. Gaga
performs well with both 2D segmentation methods on two
datasets. The performance of Gaussian Grouping (noted as
GG) varies significantly with different 2D segmentation methods,
whereas Gaga consistently delivers stable performance.

SAM does not support language prompts, SA3D, Gaussian
Grouping and Gaga adopt Grounding DINO [19] to iden-
tify the mask ID in a 2D image and pick the corresponding
3D mask. OmniSeg3D does not provide mask IDs, so we
use Grounding DINO to identify a pixel that semantically
aligns with the text prompt and select the corresponding 3D
mask based on a similarity threshold of 0.9.

Tab. 1 illustrates that Gaga achieves superior results in
mIoU and mBIoU compared to previous methods utilizing
SAM as 2D segmentation method. As shown in Fig. 5, the
visualization results of 3D query tasks with prompts “pa-
per napkin” and “bag of cookies” further demonstrate the
advancement of Gaga, as Gaga provides more clear seg-
mentation masks without artifacts.

4.3. 3D Segmentation on Replica and ScanNet
Tab. 2 presents the quantitative comparison results on
Replica and ScanNet datasets. Gaga exhibits better per-
formance on both datasets regardless of the 2D segmen-
tation model used, showcasing its stability across different
datasets and models and consistently achieving high perfor-
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RGB GG + EntitySeg Gaga + EntitySegGG + SAM Gaga + SAM Groud Truth

Figure 6. Qualitative results on Replica and ScanNet. Gaga
consistently predicts more accurate segmentation masks. Gaussian
Grouping (noted as GG) often covers the same object with differ-
ent masks (row 1, 3 and 5), creating large empty regions (row 1, 2
and 3), or misidentifying similar instances (row 4 and 5).

2D Seg. Method EntitySeg SAM
Model Training Data IoU ↑ IoU Drop ↓ IoU ↑ IoU Drop ↓

GG [32] 30% 28.42 20.85 17.02 21.78
Gaga (Ours) 40.40 6.22 42.53 5.61

GG [32] 20% 24.56 31.35 16.02 26.38
Gaga (Ours) 39.00 9.46 42.14 6.47

GG [32] 10% 20.62 42.56 13.97 35.78
Gaga (Ours) 35.92 16.60 39.06 13.30

GG [32] 5% 10.00 72.15 6.77 68.87
Gaga (Ours) 29.67 31.11 31.87 29.27

Table 3. Quantitative results on Replica with limited data.
Gaga consistently outperforms Gaussian Grouping with both 2D
segmentation methods. The percentage of IoU drop shows that
Gaga has greater robustness against reductions in training data.

mance. Qualitative results are shown in Fig. 6. Row 1 and
2 depict the visualizations from the Replica dataset, while
rows 3-5 showcase results from the ScanNet dataset. Gaus-
sian Grouping [32] frequently assigns different mask IDs to
the same object, resulting in inconsistent masks and empty
regions. Row 4 shows that Gaussian Grouping struggles to
distinguish similar objects, whereas Gaga accurately iden-
tifies each object by leveraging 3D information.

4.4. 3D Segmentation with Limited Data on Replica
To demonstrate the robustness of Gaga against changes in
training image quantity, we sparsely sample the Replica
training set with ratios of 0.3, 0.2, 0.1, and 0.05. As de-
picted in Tab. 3, Gaga consistently exhibits superior per-
formance in terms of IoU, with approximately a 15% ad-
vantage using EntitySeg and a 25% advantage using SAM.
Remarkably, when utilizing SAM, Gaga surpasses fully
trained Gaussian Grouping with just 5% of the training data
by more than 10% (31.87% vs. 21.76%). We also compute
the IoU drop compared to using all training images by:

IoU Drop(x%) =
IoU(100%)− IoU(x%)

IoU(100%)
, (6)

GagaGaussian GroupingRGBRGB GagaGaussian Grouping

Figure 7. Qualitative results on Replica with limited data. The
visualizations depict samples when using only 5% of the training
data. Even with limited data, Gaga consistently produces high-
quality segmentation. In contrast, Gaussian Grouping struggles to
track objects accurately and leaves significant empty regions.

RGB Gaussian Grouping Gaga RGB Gaussian Grouping Gaga

Figure 8. Qualitative results on MipNeRF 360. Gaga provides
superior masks with finer details (row 1 and 2), fewer artifacts
and empty regions (row 1, 3 and 4), more consistent object masks
across multi-views (wall in row 1, tablecloth in row 3).

where IoU(x%) denotes the IoU achieved when x% of the
training data is used. Compared to Gaussian Grouping,
Gaga exhibits less sensitivity to decreases in the number
of training images, as evidenced by smaller values in IoU
drop. Visual results are shown in Fig. 7. With just 5% of the
training data, Gaga delivers accurate segmentation masks,
whereas Gaussian Grouping fails to provide masks for a sig-
nificant portion of objects due to inaccurate tracking.

4.5. 3D Segmentation on MipNeRF 360
We further showcase the performance of Gaga on the di-
verse MipNeRF 360 dataset. We provide visualization com-
parison on both indoor and outdoor scenes with Gaussian
Grouping [32] in Fig. 8, using SAM [16] (row 1, 2) and
EntitySeg [23] (row 3, 4). We display two images for
each scene to assess the consistency across different views.
Gaga offers more detailed segmentation, while segmenta-
tion masks generated by Gaussian Grouping exhibit severe
artifacts and empty regions. Additionally, inconsistency
across two views exists in the rendering results of Gaussian
Grouping, as shown in row 1 and row 3.

4.6. Application: Scene Manipulation
Gaga achieves high-quality and multi-view consistent 3D
segmentation, beneficial for tasks like scene manipulation.
We demonstrate the effectiveness of this application on the
MipNeRF 360 [1] and Replica [27] datasets (see Fig. 9). In
the left image, we change the color of the footstool’s cush-
ion and remove the stuffed animal on the armchair. Gaga
accurately identifies 3D Gaussians representing the cush-
ion, while Gaussian Grouping fails, coloring the entire foot-
stool maroon along with part of the sofa and some floating
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Before Editing Gaussian Grouping Gaga Before Editing Gaussian Grouping Gaga

Task: Move               closer to the windowTask: Change the cushion's color of               to maroon, remove

Figure 9. Scene manipulation results on MipNeRF 360 and Replica. Gaga accurately identifies the cushion part of the footstool,
whereas Gaussian Grouping colors it entirely. For object removal and translation tasks, Gaga generates more precise 3D entities with
fewer artifacts, resulting in better visual performance.

RGB w/o. Mask Association Video Object Tracker Our Memory Bank Groud TruthOur Memory Bank
(All Gaussians)

Linear AssignmentSAM

Figure 10. Visual comparison of mask association methods. Gaga with 3D-aware memory bank achieves a superior visual quality and
closer to the ground truth. Notice that the Video Tracker baseline mislabels the wall and floor, Our Memory Bank (w. All Gaussians)
mislabels the floor.

Gaussians. Gaga also effectively groups and removes the
entire part of the stuffed animal on the sofa with minimal
artifacts, whereas Gaussian Grouping leaves many floating
Gaussians. Similar results are observed in experiments in-
volving the position shifting of a chair in the right image.

4.7. Ablation Study on Mask Association Method
We conduct ablation studies to evaluate the effectiveness
of the proposed mask association method on the Replica
dataset. The baselines for comparison include: (1) Linear
Assignment: Cost-based linear assignment mask associa-
tion proposed in Panoptic Lifting [26]. (2) w/o. Mask As-
sociation: Lifting inconsistent 2D masks to 3D. (3) Video
Tracker: [32] is employed as a representative method. (4)
Our Memory Bank (w. All Gaussians): same as Gaga ex-
cept that it selects all Gaussians splatted to the mask as
its corresponding Gaussians. (5) Our Memory Bank: i.e.,
Gaga. We also add a baseline SAM (Upper Bound), which

Baseline IoU Precision Recall

SAM (Upper Bound) [16] 60.89 57.07 67.16

Linear Assignment [26] 1.92 1.54 0.58
w/o. Mask Association 8.81 3.19 2.16
Video Tracker [32] 21.76 25.00 19.72
Our Memory Bank (All Gaussians) 42.30 40.48 46.51
Our Memory Bank 46.21 39.53 50.62

Table 4. Ablation study on mask association methods. Our
mask association method with the 3D-aware memory bank sur-
passes the previous video tracker baseline on all metrics.

uses SAM to process rendered RGBs from Gaussian Splat-
ting and evaluate on each single frame without considering
multi-view consistency. This baseline can serve as an up-
per bound to show the inherent difference between class-
agnostic and panoptic segmentation.

Quantitative results in Tab. 4 indicate that Gaga with
the 3D-aware memory bank achieves superior performance
compared to the previous method with video tracker. The
cost-based linear assignment method used in [26] is not suit-
able for class-agnostic segmentation tasks, as it involves a
significantly larger number of masks compared to panoptic
segmentation. Comparison with Our Memory Bank (w. All
Gaussians) baseline demonstrates the effectiveness of using
depth maps to select corresponding 3D Gaussians for each
mask. We also show the visual comparison in Fig. 10.

5. Conclusions
We introduce Gaga, a framework that reconstructs and seg-
ments open-world 3D scenes using inconsistent 2D masks
predicted by zero-shot segmentation models. Gaga em-
ploys a 3D-aware memory bank to categorize 3D Gaussians
and establishes mask association across different views by
identifying the overlap between Gaussians projected to each
mask. Results on various datasets show that Gaga outper-
forms previous methods with superior segmentation accu-
racy, multi-view consistency, and reduced artifacts. Addi-
tional application in scene manipulation further highlights
Gaga’s high segmentation accuracy and practical utility.
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Gaga: Group Any Gaussians via 3D-aware Memory Bank

Supplementary Material

1. Overview
In this supplementary document, we provide further exper-
imental results, including more results on scene manipula-
tion and sparse view setting in Sec. 3. We then delve into
more experimental details of the datasets, metrics and im-
plementation in Sec. 4. More ablation studies are shown in
Sec. 5 and limitations are discussed in Sec. 6.

2. Supplementary Video
Please watch the supplementary demo video for a compre-
hensive introduction and visual comparison between our
method Gaga and the current state-of-the-art methods. The
video features additional qualitative comparisons and an an-
imation illustration of Gaga.

3. Supplementary Experimental Results
3.1. Results on Scene Manipulation
Gaga can accurately segment the Gaussians of a 3D ob-
ject and edit their properties. Using a pre-trained 3D Gaus-
sian model with identity encoding, we employ the classi-
fier trained with identity encoding to predict mask labels
for each 3D Gaussian. Subsequently, we select 3D Gaus-
sians sharing the same mask label as the target object and
edit their properties for tasks like object coloring, removal,
and position translation.

We provide additional results for the downstream scene
manipulation task to further demonstrate the prospect of
applying Gaga to real-world scenarios. On the “counter”
scene of the MipNeRF 360 dataset [1], we change the color
of the flowerpot to cyan and duplicate the glass jar. Gaus-
sian Grouping [32] can not differentiate the plant and flow-
erpot, whereas Gaga generates a more accurate segmenta-
tion mask. Additionally, Gaga produces a clearer boundary
and avoids artifacts on the iron tray when duplicating the
glass jar.

In the “figurines” scene of the LERF-Mask dataset [32],
we transform the yellow duck to blue and remove the red toy
chair. Gaga precisely changes only the duck’s color with-
out affecting other objects, and achieves a more thorough
removal of the red toy chair.

3.2. Results on Sparsely Sampled Replica
We provide additional qualitative results for the experiment
on the sparsely sampled replica dataset in Fig. 12. As the
number of training images decreases, Gaussian Grouping
produces more empty regions, e.g. the sofa, due to difficul-
ties in accurate tracking under sparse views. Whereas Gaga

exhibits a more robust performance against reductions in
the number of images.

4. Experimental Details
4.1. Details on Datasets
We employ the official script from Gaussian Splatting [13]
for colmap to acquire camera poses and the initial point
cloud. Consequently, the actual number of images uti-
lized in the experiment might be lower than expected due
to colmap process failures. Please refer to Tab. 5 for the
scene names used in the Replica and ScanNet datasets.
LERF-Mask Dataset [32]. LERF-Mask is based on the
LERF dataset [14] and annotated with tasks and ground
truth by the author of [32]. It contains 3 scenes: figurines,
ramen, and teatime. For each scene, 6-10 objects are se-
lected as text queries, and Grounding DINO [19] is utilized
to select the mask ID from the rendered segmentation.
Replica Dataset [27]. We select 8 scenes from the entire
Replica Dataset the same as [35]. We use the rendered re-
sults provided by authors of [35] and follow their data pro-
cessing process: for each scene, we uniformly select 20%
images as training data and 20% images as test data from all
rendered RGB images. This results in 180 training images
and 180 test images for each scene.
Sparsely Sampled Replica Dataset. For the same 8 scenes
as the previous experiment, we randomly sample 30%,
20%, 10%, and 5% of the total 180 training images, re-
sulting in 54, 36, 18, and 9 training images for each task,
respectively. The number of test images remains at 180.
ScanNet Dataset [10]. DM-NeRF [29] selects 8 scenes
from the entire ScanNet dataset. Each scene has approxi-
mately 300 images for training and about 100 images for
testing. We utilize 7 out of the 8 scenes, excluding ”scene
0024 00” due to the subpar 3D reconstruction results in
both Gaussian Splatting [13] and Gaussian Grouping [32].
MipNeRF 360 Dataset [1]. We downsample the images by
a factor of 4, consistent with the setting in [32], to accom-
modate the large size of the original images. For novel view
synthesis evaluation, we set the sample step at 8, the same
as the setting in [13].

4.2. Details on Evaluation Metrics
Given the disparate mask label assignments between the
ground truth segmentation and the predicted segmentation
for 3D objects, we find the best linear assignment between
the labels based on IoU for quantitative evaluation. Sub-
sequently, we employ IoU > 0.5 as the criterion for preci-
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Before Editing Gaussian Grouping Gaga Before Editing Gaussian Grouping Gaga

Task: Change the color of flowerpot to cyan, duplicate the glass jar Task: Change the color duck to blue, remove the red toy chair

Figure 11. Scene manipulation results on MipNeRF 360 and LERF-Mask. Gaga accurately identifies the flowerpot without affecting
the color of the plant. Notice that Gaussian Grouping [32] creates a cyan region on the wooden door behind. For the object removal and
duplication tasks, Gaga can also provide more accurate results with fewer artifacts.

Gaga + SAMGaga + EntitySegGG + SAMGG + EntitySeg

RGB

100 %

30 %

20 %

10 %

5 %

Ground Truth

Figure 12. Qualitative results on the sparsely sampled Replica. We showcase the novel view synthesis segmentation rendering results
provided by Gaussian Grouping and Gaga as the percentage of training images employed decreases from 100% to 5%. Gaussian Grouping
cannot correctly track the sofa under sparse views and fails to differentiate ceiling and wall, whereas Gaga consistently provides high-
quality segmentation results.
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Dataset Scene Name

Replica office 0 office 1 office 2 office 3
office 4 room 0 room 1 room 2

ScanNet scene 0010 00 scene 0012 00 scene 0033 00 scene 0038 00
scene 0088 00 scene 0113 00 scene 0192 00

Table 5. Selected scenes in Replica and ScanNet. We select 8
scenes from the Replica dataset following [35], and 7 scenes from
the ScanNet dataset following [29].

sion and recall calculations. We outline the pseudocode for
the evaluation procedure in Algorithm 1. Note that all an-
notated segmentation masks are unavailable during training
and are only accessible during evaluation as ground truth.

Algorithm 1 Evaluation Metrics
Input pred masks and gt masks are represented in binary
format with shape (nimage, nmask, h, w), where nimage

is the number of test images, nmask is the number of
predicted or ground truth masks, h, w are the height and
width of test images.
We use scipy.optimize.linear sum assignment
to solve the linear assignment problem.

Function evaluate(pred masks, gt masks)
Input: pred masks (torch.bool), gt masks (torch.bool)

Output: iou (torch.float), precision (torch.float), recall
(torch.float)

assert len(gt masks) == len(pred masks)
nimage← len(gt masks)
npred← pred masks.shape[1]
ngt← gt masks.shape[1]
iou matrix← torch.zeros((ngt, max(ngt, npred)))
for i in ngt do

for j in npred do
iou list← []
for k in nimage do

iou list.append(IoU(gt masks[k][i],
pred masks[k][j]))

end for
iou matrix[i][j]← iou list.mean()

end for
end for
gt indices, pred indices ←
linear assignment(iou matrix)
paired iou← iou matrix[gt indices][pred indices]
iou← paired iou.mean()
ncorrect← torch.sum(paired iou > 0.5)
precision← ncorrect

npred

recall← ncorrect

ngt

return iou, precision, recall

figurines ramen teatime
Overlap Threshold mIoU mBIoU mIoU mBIoU mIoU mBIoU

0.01 79.6 77.5 72.0 63.1 71.2 68.2
0.05 91.4 89.8 72.3 63.3 70.2 67.5
0.1 92.3 90.1 72.0 63.3 71.2 68.4
0.2 85.8 84.3 51.3 48.7 71.7 69.4
0.3 85.7 84.0 45.6 43.3 71.6 69.0

Table 6. Ablation study on the overlap threshold. If the overlap
between the current mask and all groups in the memory bank falls
below this threshold, we add this mask to the memory bank as a
new group. Results indicate that the default setting of 0.1 generally
yields better outcomes.

4.3. Further Implementation Details
For training vanilla 3D Gaussians, we maintain the same
parameter setting as [13]. To train the identity encoding, we
freeze all the other attributes of Gaussians and use the same
parameter setting as [32]. The identity encoding has 16 di-
mensions, and the rendered 2D identity encoding is in the
shape of 16 × h × w, where h and w represent the height
and width of the image. The classifier for predicting mask
ID given the 2D identity encoding and selecting Gaussians
for editing given the 3D identity encoding shares the same
architecture, with 16 input channels. The number of out-
put channels equals the number of groups in the 3D-aware
memory bank after associating all images. All experiments
are conducted on a single NVIDIA RTX 6000 Ada GPU.

5. Supplementary Ablation Study
5.1. Ablation Study on Overlap Threshold
We conduct additional ablation studies on the Gaussian
overlap threshold using the Replica dataset [27], with
SAM [16] as the 2D segmentation model. During the group
ID assignment process, if none of the existing groups in the
memory bank exceed the overlap threshold with the current
mask, we add the mask as a new group, indicating the dis-
covery of a new 3D object.

Tab. 6 presents our ablation study on the overlap thresh-
old. When set to 0.01, new groups are rarely created, favor-
ing association with existing ones. This yields the highest
precision but results in lower IoU performance. Conversely,
a threshold of 0.3 leads to frequent creation of new group
IDs, achieving the best IoU but significantly reducing pre-
cision. To balance performance across all three metrics, we
set the threshold to 0.1.

5.2. Comparison on Mask Association Methods
We present visual comparison results for two mask associa-
tion methods, video tracker [7] utilized by [32] and Gaga’s
3D-aware memory bank, in Fig. 13. In the “garden” scene
of the MipNeRF 360 dataset, the video tracker struggles to
track objects in the background, whereas Gaga provides as-
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Figure 13. Visual comparison between different mask association methods. Our 3D-aware memory bank offers more detailed associated
masks, accurately tracks identical objects in the scene and assigns them different mask IDs. Conversely, video object tracker leaves empty
regions in positions where it cannot track masks, and it struggles to provide consistent masks for the same object across views.

sociated results for each mask. For the scene in the ScanNet
dataset, the video tracker fails to distinguish between four
identical sofas, resulting in multiple masks for the same ob-
ject. Additionally, it assigns different mask IDs to the table
in two views. In contrast, Gaga precisely locates each ob-
ject, leading to improved mask association results and better
pseudo labels for training segmentation features.

6. Limitations
Though Gaga achieves SOTA performance compared to ex-
isting works, there are a few limitations and future works.
First, the optimization process of identity encoding and the
rest of the Gaussian parameters are independent, this is be-
cause we need to first train 3D Gaussians to acquire their
spatial location for mask association. While this pipeline
allows for the utilization of any pre-trained 3D Gaussians

as input without the need to re-train the entire scene, it does
require additional training steps. We aim to enable the joint
processing of mask association and identity encoding train-
ing in future works.

Secondly, artifacts may occur in the segmentation ren-
dered by Gaga due to inherent inconsistency in the 2D seg-
mentation. For example, an object might be depicted as one
mask in the initial view but as two separate masks in sub-
sequent views. This ambiguity introduces challenges to our
mask association process. Preprocessing steps such as di-
viding, merging, or reshaping the 2D segmentation masks
could potentially resolve this issue and improve grouping
results.
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